Zero Valent Iron (ZVI) nanocomposite for the removal of hexavalent chromium from aqueous solution

نویسندگان

  • S. Ponmani
  • C. Udayasoorian
چکیده

S. Ponmani and C. Udayasoorian Abstract -A new class of nano scale zero valent iron (nZVI) particles supported on activated carbon (AC) were synthesized and the feasibility of using nanocomposite (AC+nZVI) for the removal of Cr(VI) in water was investigated through laboratory batch test. Nanocomposite was synthesized by impregnating carbon with ferrous sulfate followed by chemical reduction with NaBH4. The XRD and SEM examinations applied for determination of particle size and characterization of produced nanoparticles. Batch experiments were performed to investigate the effects of initial Cr(VI) concentration, nanocomposite concentration, pH of solution and contact time variation on the removal efficiency of Cr(VI). The chromium removal efficiency was found to be increased with decrease in initial pH of solution and increased with nanocomposite dosage and contact time. Nanocomposite presented an outstanding ability to remove Cr(VI) due to large surface area, low particle size and high surface activity. The iron nanoparticle technology may thus offer an economically and environmentally sustainable and unique solution to one of the most vexing environmental problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مطالعه عملکرد منیزیم با ظرفیت صفر در احیاء کروم از محلول های آبی

Abstract Introduction: Chromium is an extremely important heavy metal which is used in different industries. It can be found in water resources due to insufficient treatment of industrial wastewater. The goal of this study was to survey the feasibility of application of hexavalent chromium reduction using granular magnesium as reducing agent and to investigate the affects of various operationa...

متن کامل

حذف کروم شش ظرفیتی از محیط های آبی با استفاده از نانو ذرات آهن تولید شده

Background and Objectives:Groundwater treatment by nano particles has received increasing interest in recent years. Chromium is a commonly identified contaminant in soils and groundwater. Zero-valent iron, as a natural reduction agent can be used in controlling of contaminated sites. The aim of this research is investigation of hexavalent chromium removal from aqueous solutions by using of iron...

متن کامل

Hexavalent chromium removal from near natural water by copper-iron bimetallic particles.

The reduction of hexavalent chromium (Cr(VI)) by zero-valent iron (ZVI) is self-inhibiting in near natural groundwater because insulating Fe(III)-Cr(III) (oxy)hydroxide film forms on the ZVI surface during the reaction. This study tries to overcome this deficiency by coating the surface of ZVI with copper to form copper-iron bimetallic particles. The Cr(VI) removal rate by ZVI rose significantl...

متن کامل

Removal of Acid Red 18 dye from Aqueous Solutions Using Nanoscale Zero-Valent Iron

Background and Purpose:Organic dyes with a complex structure are often toxic, carcinogenic, mutagenic, non-biodegradation and stable in the environment and if released to the environment without treatment can endanger the environment and human health. The aim was to evaluate the performance nanoscalezero-valent iron (NZVI) in the removal of dye acid red 18 (AR18) from aqueous solutions. Materia...

متن کامل

حذف کروم شش ظرفیتی از محیطهای آبی با استفاده از جذب بر روی پودر آهن تجاری؛ مطالعه سینتیکی و تعادلی

Introduction & Objective: Industrial wastewaters including heavy metals, are one of the important sources of environmental pollution. Heavy metals such as chromium is found in plating wastewater and is harmful for human health and environment. The purpose of the present study was to investigate adsorption of hexavalent chromium Cr (VI) from aqueous solution onto commerical Iron powder as an e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013